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Background: Citrus sinensis (L. Osbeck) is commonly known as sweet orange
and widely distributed as an excellent source of antioxidants and vitamin C,
which play a pivotal role in strengthening the immune system. The peel of sweet
orange is a major source of various bioactive compounds that are utilized in
different medicines.

Objective: This study aimed to explore the anatomical changes occurring at
different developmental stages of sweet orange fruit.

Methodology: Orange fruits at different developmental stages were collected
from the Botanical Garden of the University of Agriculture, Faisalabad. For this
purpose, 16 developmental stages of sweet orange were selected on the basis of
their size, growth, and development. Data were obtained for stomatal density,
number of cells, and cell size. Furthermore, the thickness of albedo and flavedo
was also recorded at each developmental stage.

Results: Results revealed that fruit diameter, cell size, stomatal number, number
of hesperidia, and the thickness of albedo and flavedo increased progressively
with fruit development and maturation. The maximum increase in all the recorded
parameters was noted at stage 16, followed by stage 15. Moreover, significant
variations in anatomical structures were observed across different developmental

Conclusion: This study highlights the growth dynamics and structural
modifications of sweet orange across different developmental stages and explores
the progressive enlargement of cell size, albedo, and flavedo thickness with
developmental stages.

INTRODUCTION

Citrus is one of the most popular fruits worldwide, grown in
over 130 countries, including Brazil, China, and the USA
(Ladaniya 2008; Spreen et al. 2020). It has major nutritional
and economic importance (Liu et al. 2012) and plays a key
role in the fresh juice market (Cuenca et al. 2018). In the early
20™ century, the words citrus production surpassed 105
million metric tons per year (FAOSTAT 2019). However,
biotic and abiatic stress hindered its growth during the last
two decades (Febres et al. 2011; Luckstead and Devadoss
2021). These problems significantly affect fruit development
and quality, leading to a yield penalty (Gong and Liu 2013;
Gottwald 2007). Sweet orange (Citrusx sinensis (L.)
Osbeck), widely regarded as a cornerstone of global
agriculture, accounts for nearly half of total citrus production.

The crop maintained an estimated yield of 47.4 million tons
for 2023-2024, with major contributions from Brazil, the
United States, and China (Gabash et al. 2023). Sweet orange
grows well in subtropical and tropical regions, representing
both natural adaptation and human cultivation, and holds
immense economic value. True citrus species are
characterized by distinct morphological traits such as pulp
vesicles, which make them among the most advanced within
this genus (Penjor et al. 2014).

Morphological and biochemical analyses have long
played an important role in clarifying citrus phylogeny, but
these methods are often limited by environmental variability
(Martasari et al. 2013). Other studies have described
phylogenetic relationships based on the origin of oil glands in
citrus, which arise through schizogenous and lysigenous
processes (Thomson et al. 1976; Bosabalidis and Tsekos
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1982; Turner et al. 1998). Sweet orange fruit formation
occurs in three layers: the exocarp (flavedo), mesocarp
(albedo), and endocarp. The falvedo layer consists of
secretory cavities of volatile compounds that are an enriched
source of monoterpenes, responsible for botanical and
economic values (Bishnoi et al. 2025). Moreover, orange
peel is a great source of bioactive compounds, including
monosaccharides, pectin, minerals, fibers, polyphenols, and
essential oils (Brezo-Borjan et al, 2023). The essential oil
fraction is characterized by terpenoid compounds dominated
by limonene. These are oxygenated derivatives and include
ester forms, aldehyde, and alcohol (Senit et al. 2019).
Polyphenolic compounds are another major group of
biomoelcules that are present in orange peel, which includes
flavonoids, phenolic acid, and their derivatives (Senit et al.
2023I; Rathod et al. 2023). The major carbohydrates include
hemicellulose, cellulose, glucose, monosaccharides,
disaccharides, and pectin (Brezo-Borjan et al, 2023).
However, orange peel is often discarded as waste, but it can
be utilized for the treatment of diseases (Grover et al. 2024;
Odetayo et al. 2025). The present research was conducted to
examine anatomical modifications at different growth stages
of fruit development to explore its structural changes and
growth patterns.

MATERIALS AND METHODS

An experiment was conducted to study the anatomical
changes at different developmental stages of the sweet
orange. Samples were collected from the Botanical Garden
of the University of Agriculture, Faisalabad. Sixteen orange
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stages were selected based on their growth stages, and the
fruit diameter of each was measured using a vernier caliper.
The samples were washed with water, dried, and coated with
transparent nail polish on the fruit surface. Three replicates of
similarly sized oranges were taken to minimize the
experimental error. After drying, the nail polish layer was
carefully peeled away. The replicas of stomata were placed
on glass slides, examined under a microscope, and stomatal
density was calculated. Cell size and the number of cells on
the orange surface were also recorded. Finally, the thickness
of the flavedo and albedo was measured at each
developmental stage (Fig. 1).

RESULTS
Fruit diameter

Graphical data indicated that fruit diameter increased
progressively with developmental stages. The diameter at
stage 16 was larger than at other stages. Overall, the results
showed that fruit size increased with development, while
non-significant differences were observed between stages 15
and 16. The trend of improvement for this attribute was;
Stage-16 > Stage-15 > Stage-14 > Stage-13 > Stage-12 >
Stage-11 > Stage-10 > Stage-9 > Stage-8 > Stage-7 > Stage-
6 > Stage-5 > Stage-4 > Stage-3 > Stage-2 > Stage 1 (Fig. 2
A).

Number of stomata

Results revealed that the number of stomata increased with
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Fig.1: Depiction of different parts of the sweet orange peel and the selection of various developmental stages of citrus fruit
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Fig. 2: Variations in the fruit diameter (A), number of stomata (B), number of flavedo cells (C), and cell size of flavedo (D) of sweet
orange at different developmental stages
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Thickness of flavedo

Results revealed that the thickness of the flavedo increased Fig. 3: Variations in the thickness of flavedo (A), thickness of
with developmental stages. The flavedo at stage-16 was albedo (B) and number of hesperidia (C), of sweet orange at
thicker compared with other stages. However slight reduction different developmental stages
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Fig. 4: The heatmap matrix on the variations in the thickness of flavedo; ToF, thickness of albedo (ToA), diameter of fruit; diameter,
number of hesperidia, number of stomata; stomata and cell size of flavedo of sweet orange at different developmental stages
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Fig. 5: Pearson correlation matrix on the variations in the thickness of flavedo; ToF, thickness of albedo (ToA), diameter of fruit;
diameter, number of hesperidia, number of stomata; stomata and cell size of flavedo of sweet orange at different developmental

stages

was observed at stage-15 as compared to satge-14, and again
at stage-16 maximum length was recorded (Fig. 3A).
Thickness of albedo

Results indicated that the thickness of the albedo increased
with developmental stages. The albedo at stage-16 was thicker
compared with other stages. While minimum readings were
recorded at stage-1. Overall, results showed that albedo
thickness increased with fruit maturation. Intriguingly, abrupt
increase in thickness was recorded at stage-16 (Fig. 3B).

Number of hesperidia

Data showed that the number of hesperidia increased with
developmental stages. The lowest count was recorded at
stage-1 compared with other stages, while the maximum
count was observed at stage-16 (Fig. 3C).

Heatmap and Pearson correlation

The heatmap matrix showed a strong linear relationship of cell
size of flavedo, number of stomata, hesperidia, diameter of
fruit, no of cells in flavedo layer, thickness of flavedo, and
albedo with stages 12, 13, 14, and 15, while an opposite
relation was recorded at stages 1, 2, 3, 4, and 5 (Fig. 4).
Moreover, a non-significant relationship was observed at
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stages 6 to 10. Pearson correlation showed a strong positive
relationship with all the studied parameters (Fig. 5).
DISCUSSION

Citrus fruits rank among the top fruits not only in total
production but also in economic value. Among them,
oranges, specifically sweet oranges, are among the most
widely cultivated citrus fruits in the world. The orange peel
consists of a thin outer layer known as the flavedo and the
thicker inner layer known as the albedo (Afifi et al. 2023).
The flavedo is comprised of the carotenoids responsible for
the typical fruit color (Kato et al. 2004), and vesicles (minute
sacs/cavities) filled with peel oil. This peel oil is responsible
for the fresh smell of the fruit. The white spongy inner albedo,
on the other hand, is composed of various substances like
flavonoids, d-limonene, limon, and pectin (Nieto et al. 2021).
This experiment was conducted to explore anatomical
changes at different developmental stages of the sweet
orange. Samples were collected from the Botanical Garden
of the University of Agriculture, Faisalabad. About 16
oranges were selected based on growth stages, and the fruit
diameter of each orange was recorded using a vernier caliper.
Graphical data indicated that flavedo cell size increased with
developmental stages, so cells at stage-16 were larger in size
compared to other stages (Fig. 2A-D). The observations of
Rafiei and Rajaei (2007) also support these results. Cell
number increased progressively with fruit development,
reaching its maximum at stage-16, though variations between
stages-15 and 16 were statistically non-significant. The
number of stomata showed the same pattern, being minimal
during initial development and rising significantly with
ripening. Fruit diameter grew uniformly with stages of
development, reaching the maximum value with stage-16,
and showing no difference between stages-15 and 16.
Flavedo thickness also rose steadily, and fruits with stage-16
had higher thickness compared to previous stages. Similarly,
albedo thickness continued to increase with fruit
development, and stage-16 fruits showed the maximum
values (Fig. 3A-C).

Increase in albedo thickness with fruit ripening is
reported (Oikeh et al. 2013). Our data showed that the
number of hesperidia increased with developmental stages
(Fig. 3). The lowest number of hesperidia was observed at
stage 1 compared with other stages. The heatmap matrix
revealed a strong linear relationship of cell size of flavedo,
number of stomata, hesperidia, diameter of fruit, no of cells
in flavedo layer, thickness of flavedo, and albedo with
stages 12, 13, 14, and 15, while an opposite relation was
recorded at stages 1, 2, 3, 4, and 5 (Fig. 4), indicating that
maximum size and length were achieved at the end of the
fruit maturity. Moreover, a non-significant relationship
was observed at stages 6 to 10. Pearson correlation showed
a strong positive relationship with all the studied
parameters (Fig. 5). Overall, the results affirmed that a
progressive enlargement of cellular structures and tissue
layers is a typical aspect of sweet orange fruit development

and might be linked with the accretion of different
bioactive compounds in this tissue.
CONCLUSION

This study provides sufficient evidence that the anatomical
features of sweet orange progressively transform during fruit
maturation. It might be an adaptive strategy or an accretion
and storage of bioactive compounds with the passage of time.
The overall developmental trend indicated a persistent
increase in tissue thickness that might be due to cell expansion
and cell division. Maximum increase in flavedo, albedo
thicknesses were noted between stages 15 and 16. These
findings confirm structural changes in sweet orange peel with
ripening. However, further studies on the composition of these
layers at different growth stages are crucial, given the
importance of medicinal and therapeutic uses.
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